Metric Entropy of Homogeneous Spaces and Finsler Geometry of Classical Lie Groups ∗ Stanislaw J . Szarek

نویسنده

  • Stanislaw J. Szarek
چکیده

For a (compact) subset K of a metric space and ε > 0, the covering number N(K, ε) is defined as the smallest number of balls of radius ε whose union covers K. Knowledge of the metric entropy, i.e., the asymptotic behaviour of covering numbers for (families of) metric spaces is important in many areas of mathematics (geometry, functional analysis, probability, coding theory, to name a few). In this paper we give asymptotically correct estimates for covering numbers for a large class of homogeneous spaces of unitary (or orthogonal) groups with respect to some natural metrics, most notably the one induced by the operator norm. This generalizes earlier author’s results concerning covering numbers of Grassmann manifolds; the generalization is motivated by applications to noncommutative probability and operator algebras. In the process we give a characterization of geodesics in U(n) (or SO(m)) for a class of non-Riemannian metric structures. ∗Partially supported by a grant from the National Science Foundation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metric Entropy of Homogeneous Spaces

For a (compact) subset K of a metric space and ε > 0, the covering number N(K, ε) is defined as the smallest number of balls of radius ε whose union covers K. Knowledge of the metric entropy, i.e., the asymptotic behaviour of covering numbers for (families of) metric spaces is important in many areas of mathematics (geometry, functional analysis, probability, coding theory, to name a few). In t...

متن کامل

Applications of Finsler Geometry to Speed Limits to Quantum Information Processing

We are interested in fundamental limits to computation imposed by physical constraints. In particular, the physical laws of motion constrain the speed at which a computer can transition between well-defined states. Here, we discuss speed limits in the context of quantum computing. We review some relevant parts of the theory of Finsler metrics on Lie groups and homogeneous spaces such as the spe...

متن کامل

Homogeneous geodesics in homogeneous Finsler spaces

In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on compact semi-simple Lie group is established. We introduce ...

متن کامل

Geometric Modeling of Dubins Airplane Movement and its Metric

The time-optimal trajectory for an airplane from some starting point to some final point is studied by many authors. Here, we consider the extension of robot planer motion of Dubins model in three dimensional spaces. In this model, the system has independent bounded control over both the altitude velocity and the turning rate of airplane movement in a non-obstacle space. Here, in this paper a g...

متن کامل

Convexity, complexity, and high dimensions

We discuss metric, algorithmic and geometric issues related to broadly understood complexity of high dimensional convex sets. The specific topics we bring up include metric entropy and its duality, derandomization of constructions of normed spaces or of convex bodies, and different fundamental questions related to geometric diversity of such bodies, as measured by various isomorphic (as opposed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997